Palladium-Catalyzed Desulfonylative Homo-Coupling of Arylsulfonyl Chlorides in the Presence of Titanium(IV) Isopropoxide

Masahiro MIURA, * Hideo HASHIMOTO, Kenji ITOH, and Masakatsu NOMURA

Department of Applied Chemistry, Faculty of Engineering,

Osaka University, Suita, Osaka 565

The desulfonylative homo-coupling of arylsulfonyl chlorides efficiently proceeds on treatment with titanium(IV) isopropoxide in the presence of a catalytic amount of $PdCl_2(PhCN)_2$ to give the corresponding biaryls in good yields.

The palladium-catalyzed coupling reaction of aryl halides with unsaturated compounds and organometallic reagents is a useful tool for preparation of substituted aromatic compounds and there have been extensive studies of the reaction. On the other hand, catalytic homo-coupling reaction of the halides also occurs in the presence of an appropriate reductant to afford biaryls in reasonable yields. 1,2)

In the course of our study of carbonylation³⁾ and vinylation⁴⁾ reactions using arylsulfonyl chlorides in place of aryl halides, we found that homo-coupling reaction of the sulfonyl chlorides (1) efficiently proceeds accompanied by desulfonylation on treatment with titanium(IV) isopropoxide Ti(O-i-Pr)₄ in the presence of a catalytic amount of dichlorobis(benzonitrile)palladium PdCl₂(PhCN)₂ to give biaryls (2).⁵⁾

<u>a;</u> X=Cl, Y=H: <u>b;</u> X=F, Y=H: <u>c;</u> X=Br, Y=H: <u>d;</u> X=H, Y=Cl: e; X=Y=H: <u>f;</u> X=Me, Y=H: <u>g;</u> X=Y=Cl: <u>h;</u> X=Cl, Y=Me

When 4-chlorobenzenesulfonyl chloride ($\underline{1a}$) (2 mmol) was heated in the presence of PdCl₂(PhCN)₂ (2.5 mol%) and Ti(O-i-Pr)₄ (2 equiv.) in m-xylene (4 cm³) at 140 °C for 2 h under nitrogen, 4,4'-dichlorobiphenyl ($\underline{2a}$) was produced in a yield of 76% (Table 1). Palladium acetate also showed a good catalytic activity, but Pd-black and PdCl₂(PPh₃)₂ were less effective. While Ti(O-n-Bu)₄ could be also used in place of Ti(O-i-Pr)₄, the yield of $\underline{2a}$ was considerably decreased. Other metal alkoxides Ti(O-t-Bu)₄, B(O-i-Pr)₃, and Al(O-i-Pr)₃ were ineffective. The biaryls ($\underline{2b}$ - \underline{h}) were also isolated in fair to good yields from the reactions of 3- and/or 4-substituted benzenesulfonyl chlorides ($\underline{1b}$ - \underline{h}) using Ti(O-i-Pr)₄ and PdCl₂(PhCN)₂

460 Chemistry Letters, 1990

Table 1. Desulfonylative homo-coupling of 4-chlorobenzenesulfonyl chloride $\underline{1a}^{a}$)

Pd-catalyst	M(OR) _n	Yield of <u>2a</u> /% ^{b)}
PdCl ₂ (PhCN) ₂	Ti(O-i-Pr) ₄	76 (74) ^{c)}
Pd(OAc) ₂	Ti(O-i-Pr) ₄	71
PdCl ₂ (PPh ₃) ₂	Ti(O-i-Pr) ₄	13
Pd-black	Ti(O-i-Pr) ₄	5
PdCl ₂ (PhCN) ₂	Ti(O-n-Bu) ₄	32
PdCl ₂ (PhCN) ₂	$Ti(O-t-Bu)_4$	_d)
PdCl ₂ (PhCN) ₂	B(O-i-Pr) ₃	_d)
PdCl ₂ (PhCN) ₂	Al(O-i-Pr) ₃	_d)

- a) The reaction was carried out in m-xylene at 140 $^{\rm O}{\rm C}$ for 2 h under N₂. [1a]:[Pd]:[M(OR)_n]=2:0.05:4.
- b) Determined by GLC analysis.
- c) Isolated yield.
- d) Formation of 2a was not detected.

Table 2. Desulfonylative homo-coupling of arylsulfonyl chlorides 1b-ia)

Arso ₂ Cl	Yield of <u>2</u> /% ^{b)}
<u>1b</u>	74
<u>1c</u>	56
<u>1d</u>	67
<u>1e</u>	51
<u>1f</u>	40
<u>1g</u>	70
<u>1h</u>	75 66 ^C)
<u>1i</u>	66 ^{C)}

- a) The reaction was carried out in
 m-xylene at 140 OC for 2 h under N₂.
 [1]:[PdCl₂(PhCN)₂]:[Ti(O-i-Pr)₄]=
 2:0.05:4.
- b) Isolated yield.
- c) A mixture of 2i and 2i'.

(Table 2). The reaction of 1-naphthalenesulfonyl chloride ($\underline{1i}$) gave a mixture of 1,1'- ($\underline{2i}$) (26%) and 1,2'-binaphthyls ($\underline{2i'}$) (40%) along with naphthalene (12%). 6 ,7)

The present reaction as well as the carbonylation³⁾ and vinylation⁴⁾ using arylsulfonyl chlorides appears to be particularly advantageous, if the corresponding halide can not be obtained by direct halogenation; e.g. <u>1g</u> and <u>1h</u>, which are able to be prepared by chlorosulfonation of 1,2-dichlorobenzene and 2-chlorotoluene in one step.⁸⁾ In addition, the reaction can be completed in a fairly short time compared with that using aryl halides.

References

- 1) R. F. Heck, "Palladium Reagents in Organic Syntheses," Academic Press, New York (1985).
- 2) F. R. S. Clark, R. O. C. Norman, and C. B. Thomas, J. Chem. Soc., Perkin Trans. 1, 1975, 121; P. Bamfield and P. M. Quan, Synthesis, 1978, 537.
- 3) M. Miura, K. Itoh, and M. Nomura, Chem. Lett., 1989, 77.
- 4) M. Miura, H. Hashimoto, K. Itoh, and M. Nomura, Tetrahedron Lett., 30, 975 (1989).
- 5) Desulfonylative homo-coupling of sodium 4-toluenesulfinate using a stoichiometric amount of Na₂PdCl₄ has been reported: K. Garves, J. Org. Chem., 35, 3273 (1970); R. Selke and W. Thiele, J. Prakt. Chem., 313, 875 (1971).
- 6) It was confirmed that both $\underline{1i}$ and $\underline{2i}$ are not transformed into the corresponding β -isomers under the reaction conditions, suggesting that the isomerization occurs during the catalytic process.
- 7) Reaction of 1-bromonaphthalene under the same conditions used for $\underline{1}$ afforded naphthalene (55%), no coupling product being detected.
- 8) E. H. Huntress and F. H. Carten, J. Am. Chem. Soc., <u>62</u>, 511 (1940).

(Received December 21, 1989)